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1. Introduction

Techniques to characterize and to measure the frequency
and phase instabilities in frequency and time devices
and in recelved radio signals are of fundamental impor-
tance to all manufacturers and users of frequency and
time technology.

In 1964, a subcommittee on frequency stabilicy was form-
ed within the Inscitute of Electrical and Electronics
Engineers (IEEE) Scandards Commictee 14 and, lacter (in
1966), in the Technical Committee on Frequency and Time
within the Society of Instrumencation and Measurement
(SIM), to prepare an IEEE standard on frequency stabili-
ty. 1In 1969, this subcommittee completed a document
proposing definitions for measures on frequency and
phase scabilicies (Barnes, et al., 1971). These recom-
mended measures of instabilities in frequency generators
have gained general acceptance among frequency and time
users throughout the world.

In this paper, measures in the time and in the frequency
domains are reviewed. The particular choice as to which
domain is usad depends on the application. Howaver, the
users are reminded that conversions using mathematical
formulations (see Appendix I) from one domain to the
ocher can present problems.

Most of the major manufacturers now specify instability
charactaristics of their standards in terms of these
racommended measures. This paper thus defines and
forpalizes the general practice of more than a decade.

2. Measuges of Frequengy and Phase Inscabilicy

Frequency and phase inscabilities shall be measured in
terms of the instantaneous, normalized frequency depar-
ture y(z) from the nominal frequency v, and/or by phase
departure $(t), in radians, from the nominal phase 2xv,t
as follovs:
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where x(z) is the phase departure expressed in units of
time.

3 Charagtevization of Frequency and Phagse
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In the frequency domalin, frequency and phase in-
scabilizy is defined by any of the following one-
sided spectral densities (cthe Fourier frequency
rangss from 0 to e):
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S,(f) of y(ct)
S,(f) of ¢(t)
S3(£) of $(v)
5. (f) of x(t).
These spectral densities are related by the
equations:
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A device or signal shall be characterized by a plot
of spectral density vs. Fourier frequency or by
tabulating discrete values or by equivalent means
such as a statement of power law(s) (Appendix I).

According to the conventional definition
(Kartaschoff, 1978) of £2(f) (pronounced "scripc
ell”), 2(f) is the ratio of the power in one side-
band due to phase modulation by noise (for a 1 Hz

bandwidth) to the total signal power (carrier plus
sidebands), that s,

Power density, one phase-noise modulation sidebard tz
Total sigral power

The conventional definition of #(f) is relaced to
s, (f) by

«(E) =

£(£) = 45, (£)

only if the mean squared phase deviation, <42 (f)> =
the integral of S,(f) from f to =, is much smaller
than one radfan. In other words, this relationship
is valid only for Fourier frequencies f far enough
from the carrier frequency and {s always violated
near the carrier.

Since S,(f) is the quancicy that i{s generally mea-
sured in frequency sctandards metrology, and £(f)
has become the prevailing measure of phase nolse
among manufacturers and users of frequency scan-
dards, 2{f) {s redefined as

2(£) = WS, (f)
This redefinicion {s intended to avoid erroneous

use of 2(f) in situations where the saall angle
approximation is not valid. In other words, S,(f)
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{s the preferred measure, since, unambiguously, {t
always can be measursd.

b.  Iime-Domain:

In the tine domain, frequency instabilicy shall be
defined by the two-sample deviation a, (1) which is
the squars root of the two-sample vari.ncc a,‘(r)
This variance, 0,3(r), has no dead-time between the
frequency samples and is also called the Allan

variance. For the sampling time r, we write:
2 1/, =2
7, (1) =3 <(yk+1 - YY) >
wvhere
+r x -
e ‘_,’-'_rk y(erde = —SEC

The symbol < > denotes an infinite time average.
In practice, the requirement of infinite time
average is never fulfilled; the use of the forego-
ing terus shall be permitted for finite time
averages. xE and x5 are time res{dual mea-
surenents uadc =t +r, k=1,2,3,

and 1/r is the noatkal £1c5s! saapfing rate which |
gives zeto dead time between frequency measure-
ments. “"Residual” implies the known syscematic
effects have been removed.

If dead time exists between the frequency departure
seasurements and this {s {gnored in the computation
of ¢,(r), resulting instability values will be
biased (except for white frequency noise). Some of
the biases have been studied and some correction
tables published [Barmes, 1969; Lesage, 1983;
Barnes and Allan, 1988]. Therefore, the term o,(r)
shall not be used to describe such biased measure-
ments. Racher, {f blased {nstability measures are
made, the information in the references should be
used to report an unbiased estimate.

If the initial sampling rate is specified as 1l/r;,
then {t has been shown that, in general, we may
obtain a more efficient estimate of o, (r) using

what i{s called "overlapping estimates."” This
estimate is obtained by computing
N-2m
- —t - 2
oy 2(N-22) 2 L e ™)
i=]

where ¥ i3 the number of original time residual
measurements spaced by r, (N=M+1l, where M is the
number of original fraquency measuraments of sample
tize r,) and r = mr,.

From the above equation, we see that a,’(r) acts
like a second-difference operator on the time
deviation residuals--providing a stationary measure
of che stochascic behavior even for nonstationary
processes. Additional variances, which may be used
to describe frequency inscabilicies, are defined in
Appendix II.

c. GClock-Time Pradiccion

The variation of the time difference between a real
clock and an {deal uniform time scale, also known
as tize incerval error, TIE, observad over a time
interval szarting a= time t, and ending at ty+¢t
shall be defined as:
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RMSTIE = ¢ [—‘-
est

tg + €
TIE(L) = x(co+c) - x(to) = Ic y(t’)de’,
0

For fairly simple models, regression analysis can
provide efficient estimates of the TIE (Draper and
Sm{ch, 1966; CCIR, 1986). 1In general, there are
many estimators possible for any statiscical quan-
tity. 1Ideally, we would like an efficient and
unbiased estimator. Using the time domain measure
a,‘(r) defined i{n (b), the following estimate of
the standard deviation (RMS) of TIE and its assoc-
fated systematic departure due to a linear
frequency drift (or its uncertainty) can be used to
predict a probable time {nterval error of a clock
synchronized at t=t;=0 and lefc free running there-
after:

2 2 2 x(t ) 2 3
-t +o (r:c)+(-—9—)] ,
vo Ty

where "a" i{s the normalized linear frequency drifc
per unit of ctime (aging) or the uncertaianty in the
drifc escimate, o, the two-sample deviation of
the initial frequehcy adjustment, o,(r) the two-
sample deviation describing the random frequency
inscability of the clock at t=r, and x(t,) is the
initial synchronization uncertainty. The third
term in the brackets provides an optimum and un-
biased estimate (under the condition of an optimum
(RMS) prediction method) in the cases of white
noise ™ and/or random walk ™. The third term is
too optcimistic, by about a factor of 1.4, for
flicker noise FM, and too pessimiscic, by about a
factor of 3, for white nolse P¥.

This estimate is a useful and fairly simple approx-
imation. In general, a more complete error
analysis becomes difficule; L{f carried ouc, such an
analysis needs to include the methods of time pre-

diction, the uncertainties of che clock parameters,
using che confidence limits of measurements defined
below, the decalled clock noise models, syscematic
effects, etc.
4. Confidence Ligits of Wessuremengs
An estimaze for a, (r) can be made from a finice data set
with M mcasu'emencs of y, as follows:
M-1
- S N = .z 2 >
j=
or, Lf cthe data are ctime readings X,
-1
ay(r) = ‘—2—'1— (xj‘_,, - 2‘( | "
2r°(M-1) j=t
The 68 percent confidence interval (or error bar), I

for Caussian noise of a parcicular value o,(r) obzained

from
follo

a finite number of samples can be estimated as

where:

wSs:
I, = o, (r)r,M"

M = total number of data points used in the
estimate,

a = an {nteger as defined in Appendix I,

x; =& =0.99,
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x, = 0.87,
"2 = 0.71'.
K.y = 0.75,

As an exazple of the Gaussian model with M=100, a = -1
(flicker frequency nolise) and a,(r = 1 second) = 10733,
wve may wrice:

I, = a,(r)0(0.77)0(100)" = g,(r)e(0.077)

vhich gives:

o,(r = 1 second) = (1 £ 0.08) x 10712,

If M is szall, then the plus and minus confidence intar-
vals becoae asymmetric and the x, coefficients are not
valid; however, these confidence intervals can be calcu-
lated (Lesage and Audoin, 1973).

1f "overlapping" estimates are used, as outlined above,
then the confidence interval of the estimate can be
shown to be less than or equal to I, as given above
(Howe, Allan, Barnes, 1981).

5. Resoumendations for Characterizing or Reporting
Measuregencs of Frequency and Phase Inscabilicies

a. Nonrandom phenomena should be recognized, for
example:

° any observed time dependancy of the sca-
tistical measures should be stated;

° the method of modeling systematic
behavior should be specified (for ex-
ample, an estimate of the linear fre-
quency drift was obtained from the
coefficients of a linear least-squares
regression to M frequency measurements,
each with a specified averaging or sample
time r and measurement bandwidth f£,);

] the environmental sensictivities should be
stated (for example, the dependence of
frequency and/or phase on temperature,
magnetic field, barometric pressure,
vibration, etc.);

b. Relevant measurement or specification
paramecars should be given:

° the method of measurements;

-] the characteristics of the referencs
signal;”

o the nominal signal frequency v,;

o the measurement system bandwidch £, and
che corresponding low pass filter
response;

[ the total measurement time and the number

of measurementcs M;

° she calculation techniques (for example,
details of the window function when
estimating pover spectral densities from
time domain data, or the assumptions
about effects of dead-time when estimat-
ing the two-sample deviation o,(r));

° the confidences of the estimate (or error
bar) and ics statiscical probabilicy
(e.g. "thrae-sigma*);
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° the environment during measurement;

° if a passive slement, such as a crystal
filter, is being measured in contrast to
a frequency and/or time generator.
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ARPENDIX I

1. wer-Law H

Power-law spectral densities are often employed as rea-
sonable and acecurate models of the random fluczuations
in precision oscillators. In practice, these random
fluctuacions can often be reprasented by the sum of five
independent noise processes, and hence:

+2
7 nt® for 0 < £ < £,
s, = a=-2 @

0 for £ > fh

where h,'s are constants, a's are incegers, and £, 1Is
the high frequency cut-off of a low pass filrer. High
frequency divergence is eliminated by the restriccions
on £ in this equation. The ldentification and charac-
terizacion of the five nolse processes are given in
Table 1, and shown in Fig. 1.
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2. gonversion Between Frequency and Time Doamafn

The operation of the counter, averaging the frequency
for a time r, may be thought of as a filtering opera-
tion. The transfer function, H(f), of this squivalent
filter {s then the Fourler transform of the impulse
response of the filter. The time domain frequency
instability is then given by

@ (M.T.r) = [ s,.(£) | K(E) §? df,
0

where S, (f) is the spectral density of frequency fluc-
tuations. 1/T is the measureaent rate (T-r is the dead
time betveen measursaents). In the case of the two-
sample varlance [H(£)|? {s 2(sin *x7£)/(xrf)?. The two-
sample variance can thus be computed from

f
h 4
2 - sip xrf
ay (r) 2 J Sy(f) 2 df .
0

Specifically, for the power law model given, the time
domain measure also follows a power law.

TABLE 1 - The functional characteristics of the independent noise processes
used in modeling frequency instability of oscillators

Slope characteristics of leg log plot
Frequency domain Time-domain
Description of ,(f) or §4(f) or
Nolse Process S3() S, (£) ai(r) a,(r) | Mod.o, ()
a s B B/2 m
andoa Walk Freq Modulation | -2 -4 1 172 1
Flicker Frequency Modulation -1 -3 0 0 0
Whice F:equohcy Modulation 0 -2 -1 -172 -1
[Flicker Phase Modulation 1 -1 -2 -1 -2
‘hice Phase Modulation 2 0 -2 -1 -3
5,0 = —BTrs, () = b1 A(r) - (r*

S,(f) = vih £2°% = vZh £ (S ma-2)
1 - 1
S;(f) = v h "2 = v 3 h, £

TABLE 2

,’(,) - |f|ulz

Mod.a, (r) =~ |r)®’

- Translation of frequency instability messures from spectral densities in

frequency domain to variances in time domain and vice versa (For 2xf,r » 1)

|

'
'
+

:;uctipcion of noise process ai(r) - S,(f) - ‘ S,(f) =

pangon Yl Fasuency ue s | dfro)e] Slrao)e
|[Flicker Frequency Modulatien Blf S, (£)]r° -;-[r° a§(r)] £ EZBL(H’ a;(r)] £3
i.'-’hi:c Frequency Modulation ClLE s,(E)fr? é[r* a§(r)}£° !-gc—[r" ,;(,)}f'z
EFl‘.ck.t Phase Modulation DI£ts, (£)]r"2 %[,z 0;0)] £ %—[rl °§(')]F"
éh‘hi:c Phase Modulation E|£2s,(£)]r? %[,z ’;(')] £ %[’z ’;('.)]fo

1.038 + 3 log, (2xf,r)

b4x?
A= -E- C= 1/2
B= 2log,2 D=

422

axt
TN-142



2
2, . . L
’y (r) h_2 3 r <+ h_1 2105.2 + h° 2
1.038 + 3 log (2«f, r) it
+h e el
L an? el 2 2.2
(2%)°r

This ioplicictly assumes that the random driving mech-
anisa for each term is independent of the others. In
addition, there is the implicit assumption that the
aechanisa is valid over all Fourler frequencies, which
may not always be true.

The values of h, are characteristic models of oscillator
frequency noise. For integer values (as often seems %o
be the case for reasonable models), gy = -a - 1,

for -3Sa< 1, and y = -2 for a 2 1, whers ¢,%(r)-r*,

Table 2 gives the coefficiencs of the translation among
the frequency stabllity measures from time domain to
frequency domain and from frequency domain to time
doamain.

The slope characteristics of the five independent noise
processes ars plotted in the frequency and time domains
in Fig. 1 (log-log scale).

= 7
Log Sy (f) \\ 7-1 f1

Y

I
Log Fourier Frequency, f

|
\f
\
Log Se(f) f-3
i \
V f‘2
£t 3
L Ti
Log Fourier Frequenicy, f
! | |
N v %
Leg o (7) ~ T T
L1

Log Sample Time, ©

Slope characteristics of the five
independent noise processes.

FIGLRE 1
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Mod ¢, 3(r)

Instead of the use of ¢,2(r), a "Modified Variance* Mod
o,’(r) asy be used to c‘atactorizo frequency instabili-
tlies (Stein, 1985; Allan, 1987). It has the property of
yielding different dependence on r for white phase noise
and flicker phase noise. The dependence for Mod a,(r)
1s r°3/2 and ¢! respectively. Mod a,’(r) is defined

as:
N-Jml (m+]-1 2
T e | L
Mod ¢ (r) = (x -2x +x,)
y 2¢2 g2 (§-3m+1) {420 “Ti+m T
I=1 | i=j

where N i{s the original number of time measurements
spaced by r, and r = mr, the saaple time of choice
(N=M+1). A device or signal shall be characterized by a
plot of o,(r) or o,2(r) or Mod g,(r) or Mod a,2(r) vs.
sazpling time r, or by tabulating discrete values or by
equivalent means such as & statement of pover laws
(Appendix I).

2. Qsher Variances

Several other variances have been introduced by workers
in this field. In particular, before the introduction
of the two-sample variance, it was standard practice to
use the sample variance, 32, defined as

2 f
e fhosn (-‘-m;%f-‘)* df.

In practice it may be obtained from a set of measure-
ments of the frequency of the oscillator as

N
21 "'z
s“=2l (-
N =1 i

The sanple variance diverges for some types of noise
and, therefors, is not generally useful.

Other variances based on the structure function approach
can also be defined (Lindsey and Chi, 1976). For
example, there are the Hadamard variance, the three-
sample variance and the high pass variance (Rutzan
1978)., They are occasionally used in research and
sciencific works for specific purposes, such as
differenciating between differsnt types of noise and for
dealing with systematics and sidebands in tha spectrum.
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